Fish

Kamis, 23 Februari 2012

Teori Belajar menurut Bruner dan Ausuble

Teori Belajar Bruner

Menurut Bruner belajar matematika adalah belajar tentang konsep-konsep dan struktur-struktur matematika. Oleh karena itu pemahaman terhadap apa itu konsep dan struktur suatu materi menjadi sangat penting agar materi dapat dipahami secara mendalam. Bruner selalu menekankan material sebagai tahap awal proses belajar sehingga peserta didik harus terlihat aktif mentalnya. Bruner mengatakan ada tiga fase atau tahap belajar yaitu enactive, iconic, dan symbolic.
1. Fase Enactive adalah tahap belajar dimana peserta didik belajar tentang konsep menggunakan atau memanipulasi objek secara langsung berupa benda-benda konkrit atau situasi nyata.
2. Fase Iconic adalah tahap belajar dimana peserta didik belajar konsep melalui representasi (perwujudan) dalam bentuk bayangan visual berupa gambar, diagram yang menggambarkan kegiatan pada tahap enactive
3. Fase Syimbolic adalah tahapan belajar dimana siswa telah dapat mereprentasikan konsep dalam bentuk simbol-simbol, seperti lambang matematika, notasi matematika dan lain-lain seperti yang telah disepakati dalam bidang tersebut.

Bruner beranggapan bahwa pencarian konsep dan struktur dalam matematika tidak terjadi serta merta namun merupakan proses yang didapat melalui 3 fase di atas secara aktif. Walaupun Bruner tidak menjabarkannya secara sistematis namun yang terpenting adalah bagaimana kita memilih, mempertahankan, dan mentransformasikan informasi secara aktif.

Teori Belajar Ausuble

Ausuble mengatakan belajar terbagi menjadi dua yaitu belajar bermakna dan belajar hapalan. Menurut Ausuble belajar bermakna merupakan proses yang mengaitkan informasi baru pada konsep-konsep relevan yang terdapat dalam struktur kognitif seseorang. Jika proses tersebut tidak terjadi maka belajar menjadi belajar hapalan. Metode mengajar yang bisa digunakan dalam belajar bermakna adalah discovery (penemuan) dan Inkuiri.

Kamis, 16 Februari 2012

Soal Barisan dan Deret

Diketahui jumlah 4 suku pertama deret aritmatika -6 dan jumlah 3 suku berikutnya adalah 27. Hitunglah jumlah 10 suku pertama deret tersebut?

Rabu, 09 Maret 2011

Sebuah upaya memperbaiki sebuah proses belajar...

Presentasi matematika membantu siswa untuk lebih memahami materi lebih mendalam.  Tahap awal metode ini adalah dengan membagi siswa dalam beberapa kelompok, menentukan tugas tiap kelompok, yaitu materi yang akan siswa pelajari dalam kelompok dan presentasikan.  Selama persiapan presentasi, kelompok yang mendapat giliran presentasi mendapat bimbingan dari guru yang bersangkutan.  Video berikut adalah sedikit cuplikan pelaksanaan metode ini:

video

Selasa, 01 Maret 2011

Membuktian rumus perbandingan trigonometri.........

Akhirnya sampai juga materi bab berikutnya, trigonometri...usai berkutat dengan materi logika yang membingungkan...lalu ditambah dengan stress menghadapi hasil tes kompetensi yang dibawah kkm (harus remedial), aku coba ajak siswa-siswaku untuk belajar langsung dengan contoh nyata untuk membuktikan perbandingan trigonometri.

Alat dan bahan yang diperlukan:
- 5 batang kayu atau bambu berukuran berbeda
- tali plastik atau benang untuk mengikat
- meteran atau penggaris panjang
- busur derajat (berukuran besar)
- tabel matematika/kalkulator scientific
- Alat tulis






Langkah-langkah:
  • Tancapkan batang bambu di tanah, ikatkan tali atau benang pada ujung batang tersebut, tarik ke sampai tanah.
  • Batang yang ditancapkan tadi dengan tanah dan tali membentuk segitiga siku-siku. Ukur batang kayu sebagai sisi depan, jarak batang kayu dengan tali sebagai sisi samping dan panjang tali yang diikatkan sebagai hipotenusa, ukur pula sudut yang terbentuk antara tali dengan tanah.
  •  Catat pada tabel yang terdapat dalam lembar kerja.
  •  Ulang langkah di atas pada batang kayu ke 2, 3, dst.
  •  Catat nilai fungsi trigonometri (sinus, cosinus, tangen) setiap sudut yang didapat menggunakan tabel matematika/kalkulator, hitung nilai perbandingan trigonometri menggunakan rumus, bandingkan hasil yang diperoleh dengan nilai fungsi menggunakan tabel/kalkulator.

Senin, 28 Februari 2011

Mencoba Menulis......

Sebuah kenyataan pahit maupun manis dalam hidup adalah bagian dari penggalan pengalaman berharga yang akan buat kita semakin pintar dan bijak....

Andai hidup tak pernah membiarkan kita mengecap pahit dan manis itu, apalah gunanya hidup...bukankah setiap manis yang kita rasakan akan sangat indah saat kita tau bagaimana rasanya pahit....

Hidup mengajarkan kita banyak hal tak hanya pahit dan manis...maka bersyukurlah kita karna hidup ini karna rasa ini, karna takdir ini,karna konsekuensi ini,karna kenyataan ini,....karna pelajaran ini...berharga...kita dapat rasakan bahwa semua begitu berharga karena kita hidup...

Senin, 14 Februari 2011

tentang UN 2011

Beberapa hal yang  penting pada  Ujian Nasional 2011 ini antara lain adalah :

1. Ujian Nasional 2011 hanya diadakan satu kali, itu artinya tidak ada ujian ulang seperti tahun lalu.

2. UN susulan dilaksanakan 1 minggu setelah UN utama ( bagi yang berhalangan ikut UN utama karena sakit misalnya )

3. Kriteria kelulusan
Nilai Akhir (NA) Ujian Nasional rata-ratanya ditetapkan 5,5 dan tidak ada nilai 4. Nilai akhir (NA) didapat melalui rumusan :
NA = 60% UN + 40% NS
NA : nilai akhir
UN : Ujian Nasional
NS : Nilai Sekolah
dimana nilai NS didapat dari NS = 60% US + 40% NR
US : Ujian Sekolah
NR : rata-rata nilai rapor semester 3,4,5